clock_generator/firmware/src/main.c

761 lines
25 KiB
C
Raw Normal View History

#include <avr/eeprom.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stdbool.h>
#define SPI_PORT PORTB
#define SPI_DDR DDRB
#define SPI_SCK PB5
#define SPI_MOSI PB3
#define SPI_SS PB2
#define LCD_CD PB0
#define LCD_RST PB1
#define ENC_A (PINB & (1 << PB6))
#define ENC_B (PINB & (1 << PB7))
uint8_t EEMEM eeprom_contrast = 8;
uint8_t EEMEM eeprom_backlight = 1;
static const uint8_t sacred_chao[200] = { 0x00, 0x00, 0x00, 0x00, 0x80, 0xC0, 0xE0, 0xF0, 0xF0, 0xF8, 0xFC, 0xFC, 0xFE, 0xFE, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFE, 0xFE, 0xFC, 0xFC, 0xF8, 0xF0, 0xF0, 0xE0, 0xC0, 0x80, 0x00, 0x00, 0x00, 0x00,
0x80, 0xF0, 0xFC, 0xFE, 0xFF, 0xFF, 0x7F, 0x3F, 0x1F, 0x3F, 0x3F, 0x7F, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0x0F, 0x0F, 0x07, 0x07, 0x07, 0x03, 0xC3, 0xE3, 0x73, 0x37, 0x17, 0x07, 0x0F, 0x1E, 0x3C, 0xF0, 0x80,
0xFF, 0xFF, 0xFF, 0xE7, 0xC3, 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0x0F, 0x00, 0x00, 0xFC, 0xFE, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFC, 0x30, 0x00, 0x00, 0xFF,
0x01, 0x0F, 0x3F, 0x4F, 0x9F, 0x3F, 0x3E, 0x3C, 0x7C, 0x7C, 0x7C, 0x7C, 0x3E, 0x3E, 0x3E, 0x1F, 0x1F, 0x0F, 0x07, 0x01, 0x00, 0x00, 0x00, 0x01, 0x03, 0x07, 0x07, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x07, 0x07, 0x03, 0x81, 0x40, 0x30, 0x0E, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01, 0x02, 0x04, 0x08, 0x08, 0x10, 0x20, 0x20, 0x40, 0x40, 0x40, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x40, 0x40, 0x40, 0x20, 0x20, 0x10, 0x08, 0x08, 0x04, 0x02, 0x01, 0x00, 0x00, 0x00, 0x00 };
static const uint8_t onders_org[96] = { 0xE0, 0x60, 0xE0, 0x00, 0x00, 0xE0, 0x60, 0xE0, 0x00, 0x00, 0xE0, 0x60, 0xF8, 0x00, 0x00, 0xE0, 0xA0, 0xE0, 0x00, 0x00, 0xE0, 0x20, 0x60, 0x00, 0x00, 0xE0, 0xA0, 0xA0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xE0, 0x60, 0xE0, 0x00, 0x00, 0xE0, 0x20, 0x60, 0x00, 0x00, 0xE0, 0x60, 0xE0,
0x03, 0x02, 0x03, 0x00, 0x00, 0x03, 0x00, 0x03, 0x00, 0x00, 0x03, 0x02, 0x03, 0x00, 0x00, 0x03, 0x02, 0x02, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x03, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0x02, 0x03, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x0B, 0x0A, 0x0F};
struct symbol {
uint8_t length;
uint8_t symbol[];
};
static const struct symbol sym_a = { 6, { 0xC0, 0xF0, 0x3C, 0x3C, 0xF0, 0xC0,
0x3F, 0x3F, 0x06, 0x06, 0x3F, 0x3F } };
static const struct symbol sym_b = { 6, { 0xFC, 0xFC, 0x8C, 0x8C, 0xFC, 0x78,
0x3F, 0x3F, 0x31, 0x31, 0x3F, 0x1E } };
static const struct symbol sym_c = { 5, { 0xF8, 0xFC, 0x0C, 0x1C, 0x18,
0x1F, 0x3F, 0x30, 0x38, 0x18 } };
static const struct symbol sym_e = { 5, { 0xFC, 0xFC, 0x8C, 0x8C, 0x0C,
0x3F, 0x3F, 0x31, 0x31, 0x30 } };
static const struct symbol sym_g = { 6, { 0xF8, 0xFC, 0x0C, 0x0C, 0x3C, 0x38,
0x1F, 0x3F, 0x30, 0x33, 0x3F, 0x1F } };
static const struct symbol sym_h = { 6, { 0xFC, 0xFC, 0x80, 0x80, 0xFC, 0xFC,
0x3F, 0x3F, 0x01, 0x01, 0x3F, 0x3F } };
static const struct symbol sym_i = { 4, { 0x0C, 0xFC, 0xFC, 0x0C,
0x30, 0x3F, 0x3F, 0x30 } };
static const struct symbol sym_k = { 6, { 0xFC, 0xFC, 0xC0, 0xF0, 0x7C, 0x1C,
0x3F, 0x3F, 0x03, 0x0F, 0x3E, 0x38 } };
static const struct symbol sym_l = { 5, { 0xFC, 0xFC, 0x00, 0x00, 0x00,
0x3F, 0x3F, 0x30, 0x30, 0x30 } };
static const struct symbol sym_n = { 7, { 0xFC, 0xFC, 0xF0, 0xC0, 0x00, 0xFC, 0xFC,
0x3F, 0x3F, 0x00, 0x03, 0x0F, 0x3F, 0x3F } };
static const struct symbol sym_o = { 6, { 0xF8, 0xFC, 0x0C, 0x0C, 0xFC, 0xF8,
0x1F, 0x3F, 0x30, 0x30, 0x3F, 0x1F } };
static const struct symbol sym_p = { 6, { 0xFC, 0xFC, 0x8C, 0x8C, 0xFC, 0xF8,
0x3F, 0x3F, 0x01, 0x01, 0x01, 0x00 } };
static const struct symbol sym_r = { 6, { 0xFC, 0xFC, 0x8C, 0x8C, 0xFC, 0xF8,
0x3F, 0x3F, 0x01, 0x03, 0x3F, 0x3E } };
static const struct symbol sym_s = { 6, { 0xF8, 0xFC, 0x8C, 0x8C, 0x9C, 0x18,
0x18, 0x39, 0x31, 0x31, 0x3F, 0x1F } };
static const struct symbol sym_t = { 6, { 0x0C, 0x0C, 0xFC, 0xFC, 0x0C, 0x0C,
0x00, 0x00, 0x3F, 0x3F, 0x00, 0x00 } };
static const struct symbol sym_u = { 6, { 0xFC, 0xFC, 0x00, 0x00, 0xFC, 0xFC,
0x3F, 0x3F, 0x30, 0x30, 0x3F, 0x3F } };
static const struct symbol sym_0 = { 5, { 0xF8, 0xFC, 0x0C, 0xFC, 0xF8,
0x1F, 0x3F, 0x30, 0x3F, 0x1F } };
static const struct symbol sym_1 = { 5, { 0x30, 0x30, 0xFC, 0xFC, 0x00,
0x30, 0x30, 0x3F, 0x3F, 0x30 } };
static const struct symbol sym_2 = { 5, { 0x18, 0x1C, 0x8C, 0xFC, 0xF8,
0x38, 0x3E, 0x3F, 0x33, 0x30 } };
static const struct symbol sym_3 = { 5, { 0x18, 0x9C, 0x8C, 0xFC, 0x78,
0x18, 0x39, 0x31, 0x3F, 0x1E } };
static const struct symbol sym_4 = { 5, { 0x80, 0xE0, 0x78, 0xFC, 0xFC,
0x07, 0x07, 0x06, 0x3F, 0x3F } };
static const struct symbol sym_5 = { 5, { 0xFC, 0xFC, 0x8C, 0x8C, 0x0C,
0x1C, 0x3D, 0x31, 0x3F, 0x1F } };
static const struct symbol sym_6 = { 5, { 0xF8, 0xFC, 0x8C, 0xBC, 0x38,
0x1F, 0x3F, 0x31, 0x3F, 0x1F } };
static const struct symbol sym_7 = { 5, { 0x0C, 0x0C, 0xEC, 0xFC, 0x1C,
0x00, 0x3E, 0x3F, 0x01, 0x00 } };
static const struct symbol sym_8 = { 5, { 0x78, 0xFC, 0x8C, 0xFC, 0x78,
0x1E, 0x3F, 0x31, 0x3F, 0x1E } };
static const struct symbol sym_9 = { 5, { 0xF8, 0xFC, 0x8C, 0xFC, 0xF8,
0x1C, 0x3D, 0x31, 0x3F, 0x1F } };
static const struct symbol sym_colon = { 2, { 0x30, 0x30,
0x0C, 0x0C } };
static const struct symbol sym_setup = { 19, { 0xF8, 0x98, 0xB8, 0x00, 0xF8, 0x98, 0x18, 0x00, 0x18, 0xF8, 0x18, 0x00, 0xF8, 0x00, 0xF8, 0x00, 0xF8, 0x98, 0xF8,
0x1D, 0x19, 0x1F, 0x00, 0x1F, 0x19, 0x18, 0x00, 0x00, 0x1F, 0x00, 0x00, 0x1F, 0x18, 0x1F, 0x00, 0x1F, 0x01, 0x01 } };
enum input {cw, ccw, click, hold};
static volatile enum state {home, ch1, ch2, ch3, setup} current_state = home;
static volatile enum state home_state = ch1;
static volatile enum setup_state {contrast, backlight, back, change_contrast, change_backlight} setup_state = contrast;
static volatile uint8_t enc = 0;
static volatile uint8_t value_contrast;
static volatile uint8_t value_backlight;
void spi_init(void) {
SPI_DDR |= (1 << SPI_SCK) | (1 << SPI_MOSI) | (1 << SPI_SS);
SPI_PORT |= (1 << SPI_SS);
SPCR = (1 << SPE) | (1 << MSTR);
SPSR = (1 << SPI2X);
}
uint8_t spi_byte(uint8_t data) {
SPDR = data;
while(!(SPSR & (1 << SPIF)));
return SPDR;
}
void lcd_write(uint8_t data) {
SPI_PORT &= ~(1 << SPI_SS);
spi_byte(data);
SPI_PORT |= (1 << SPI_SS);
}
void lcd_init(void) {
SPI_DDR |= (1 << LCD_CD) | (1 << LCD_RST);
_delay_ms(1);
SPI_PORT |= (1 << LCD_RST);
_delay_ms(5);
lcd_write(0x40); // (6) Set Scroll Line: Display start line 0
lcd_write(0xA1); // (13) Set SEG direction: SEG reverse
lcd_write(0xC0); // (14) Set COM direction: Normal COM0 - COM63
lcd_write(0xA6); // (11) Set Inverse Display: Display inverse off
lcd_write(0xA2); // (17) Set LCD Bias Ratio: Set Bias 1/9 (Duty 1/65)
lcd_write(0x2F); // (5) Set Power Control: Booster, Regulator and Follower on
lcd_write(0x27); // (8) Set VLCD Resistor Ratio: Set Contrast
lcd_write(0x81); // (9) Set Electronic Volume: Set Contrast
lcd_write(value_contrast); // (9) Set Electronic Volume: Set Contrast
lcd_write(0xAF); // (12) Set Display Enable: Display on
}
void lcd_update_contrast(void) {
SPI_PORT &= ~(1 << LCD_CD);
lcd_write(0x81); // (9) Set Electronic Volume: Set Contrast
lcd_write(value_contrast); // (9) Set Electronic Volume: Set Contrast
SPI_PORT |= (1 << LCD_CD);
}
void lcd_update_backlight(void) {
switch (value_backlight) {
case 0:
DDRD &= (0 << PD5);
break;
default:
DDRD |= (1 << PD5);
OCR0B = value_backlight - 1;
break;
}
}
void lcd_fill(uint8_t data) {
for (uint8_t i = 0; i < 8; i++) {
SPI_PORT &= ~(1 << LCD_CD);
lcd_write(0x00);
lcd_write(0x10);
lcd_write(0xB0 + i);
SPI_PORT |= (1 << LCD_CD);
for (uint8_t j = 0; j < 102; j++)
lcd_write(data);
}
}
static void lcd_write_kerning(const uint8_t length,
const bool invert) {
for (uint8_t i = 0; i < length; i++)
if (invert)
lcd_write(0xFF);
else
lcd_write(0x00);
}
static void lcd_write_symbol_page(const struct symbol* sym,
uint8_t page,
bool invert) {
for (uint8_t i = 0; i < sym->length; i++)
if (invert)
lcd_write(~sym->symbol[page * sym->length + i]);
else
lcd_write(sym->symbol[page * sym->length + i]);
}
static void lcd_write_digit_page(uint8_t digit, uint8_t page,
bool invert) {
switch (digit) {
case 0:
lcd_write_symbol_page(&sym_0, page, invert);
break;
case 1:
lcd_write_symbol_page(&sym_1, page, invert);
break;
case 2:
lcd_write_symbol_page(&sym_2, page, invert);
break;
case 3:
lcd_write_symbol_page(&sym_3, page, invert);
break;
case 4:
lcd_write_symbol_page(&sym_4, page, invert);
break;
case 5:
lcd_write_symbol_page(&sym_5, page, invert);
break;
case 6:
lcd_write_symbol_page(&sym_6, page, invert);
break;
case 7:
lcd_write_symbol_page(&sym_7, page, invert);
break;
case 8:
lcd_write_symbol_page(&sym_8, page, invert);
break;
case 9:
lcd_write_symbol_page(&sym_9, page, invert);
break;
}
}
static void lcd_write_integer_page(uint8_t integer, uint8_t digits,
uint8_t page, bool invert) {
if (digits != 0 || integer != 0) {
uint8_t input_digits = 0;
uint16_t comperator = 1;
for (; comperator <= integer; comperator *= 10, input_digits++);
for (int8_t i = digits - input_digits; i > 0; i--) {
lcd_write_kerning(2, invert);
lcd_write_digit_page(0, page, invert);
}
for (; comperator >= 10; comperator /= 10) {
lcd_write_kerning(2, invert);
lcd_write_digit_page((integer % comperator) / (comperator / 10),
page, invert);
}
}
}
void lcd_splash(void) {
lcd_fill(0x00);
for (uint8_t i = 0; i < 5; i++) {
SPI_PORT &= ~(1 << LCD_CD);
lcd_write(0x0F);
lcd_write(0x11);
lcd_write(0xB1 + i);
SPI_PORT |= (1 << LCD_CD);
for (uint8_t j = 0; j < 40; j++)
lcd_write(sacred_chao[i * 40 + j]);
}
for (uint8_t i = 0; i < 2; i++) {
SPI_PORT &= ~(1 << LCD_CD);
lcd_write(0x0A);
lcd_write(0x11);
lcd_write(0xB6 + i);
SPI_PORT |= (1 << LCD_CD);
for (uint8_t j = 0; j < 48; j++)
lcd_write(onders_org[i * 48 + j]);
}
}
static void lcd_home(void) {
lcd_fill(0x00);
bool ch1_selected = false;
bool ch2_selected = false;
bool ch3_selected = false;
bool setup_selected = false;
switch (home_state) {
case ch1:
ch1_selected = true;
break;
case ch2:
ch2_selected = true;
break;
case ch3:
ch3_selected = true;
break;
default: // setup
setup_selected = true;
break;
}
for (uint8_t i = 0; i < 2; i++) {
SPI_PORT &= ~(1 << LCD_CD);
lcd_write(0x00);
lcd_write(0x10);
lcd_write(0xB0 + i);
SPI_PORT |= (1 << LCD_CD);
lcd_write_kerning(2, ch1_selected);
lcd_write_symbol_page(&sym_c, i, ch1_selected);
lcd_write_kerning(2, ch1_selected);
lcd_write_symbol_page(&sym_h, i, ch1_selected);
lcd_write_kerning(2, ch1_selected);
lcd_write_symbol_page(&sym_1, i, ch1_selected);
lcd_write_kerning(2, ch1_selected);
SPI_PORT &= ~(1 << LCD_CD);
lcd_write(0x00);
lcd_write(0x10);
lcd_write(0xB2 + i);
SPI_PORT |= (1 << LCD_CD);
lcd_write_kerning(2, ch2_selected);
lcd_write_symbol_page(&sym_c, i, ch2_selected);
lcd_write_kerning(2, ch2_selected);
lcd_write_symbol_page(&sym_h, i, ch2_selected);
lcd_write_kerning(2, ch2_selected);
lcd_write_symbol_page(&sym_2, i, ch2_selected);
lcd_write_kerning(2, ch2_selected);
SPI_PORT &= ~(1 << LCD_CD);
lcd_write(0x00);
lcd_write(0x10);
lcd_write(0xB4 + i);
SPI_PORT |= (1 << LCD_CD);
lcd_write_kerning(2, ch3_selected);
lcd_write_symbol_page(&sym_c, i, ch3_selected);
lcd_write_kerning(2, ch3_selected);
lcd_write_symbol_page(&sym_h, i, ch3_selected);
lcd_write_kerning(2, ch3_selected);
lcd_write_symbol_page(&sym_3, i, ch3_selected);
lcd_write_kerning(2, ch3_selected);
SPI_PORT &= ~(1 << LCD_CD);
lcd_write(0x00);
lcd_write(0x10);
lcd_write(0xB6 + i);
SPI_PORT |= (1 << LCD_CD);
lcd_write_kerning(2, setup_selected);
lcd_write_symbol_page(&sym_setup, i, setup_selected);
lcd_write_kerning(3, setup_selected);
}
}
static void lcd_setup(void) {
lcd_fill(0x00);
bool contrast_selected = false;
bool backlight_selected = false;
bool back_selected = false;
bool change_contrast_selected = false;
bool change_backlight_selected = false;
switch (setup_state) {
case contrast:
contrast_selected = true;
break;
case backlight:
backlight_selected = true;
break;
case back:
back_selected = true;
break;
case change_contrast:
change_contrast_selected = true;
break;
case change_backlight:
change_backlight_selected = true;
break;
}
for (uint8_t i = 0; i < 2; i++) {
SPI_PORT &= ~(1 << LCD_CD);
lcd_write(0x00);
lcd_write(0x10);
lcd_write(0xB0 + i);
SPI_PORT |= (1 << LCD_CD);
lcd_write_kerning(32, true);
lcd_write_symbol_page(&sym_s, i, true);
lcd_write_kerning(2, true);
lcd_write_symbol_page(&sym_e, i, true);
lcd_write_kerning(2, true);
lcd_write_symbol_page(&sym_t, i, true);
lcd_write_kerning(2, true);
lcd_write_symbol_page(&sym_u, i, true);
lcd_write_kerning(2, true);
lcd_write_symbol_page(&sym_p, i, true);
lcd_write_kerning(33, true);
}
for (uint8_t i = 0; i < 2; i++) {
SPI_PORT &= ~(1 << LCD_CD);
lcd_write(0x00);
lcd_write(0x10);
lcd_write(0xB2 + i);
SPI_PORT |= (1 << LCD_CD);
lcd_write_kerning(2, contrast_selected);
lcd_write_symbol_page(&sym_c, i, contrast_selected);
lcd_write_kerning(2, contrast_selected);
lcd_write_symbol_page(&sym_o, i, contrast_selected);
lcd_write_kerning(2, contrast_selected);
lcd_write_symbol_page(&sym_n, i, contrast_selected);
lcd_write_kerning(2, contrast_selected);
lcd_write_symbol_page(&sym_t, i, contrast_selected);
lcd_write_kerning(2, contrast_selected);
lcd_write_symbol_page(&sym_r, i, contrast_selected);
lcd_write_kerning(2, contrast_selected);
lcd_write_symbol_page(&sym_a, i, contrast_selected);
lcd_write_kerning(2, contrast_selected);
lcd_write_symbol_page(&sym_s, i, contrast_selected);
lcd_write_kerning(2, contrast_selected);
lcd_write_symbol_page(&sym_t, i, contrast_selected);
lcd_write_kerning(2, contrast_selected);
lcd_write_symbol_page(&sym_colon, i, contrast_selected);
lcd_write_kerning(2, contrast_selected);
lcd_write_kerning(16, false);
lcd_write_integer_page(value_contrast, 2, i, change_contrast_selected);
lcd_write_kerning(2, change_contrast_selected);
}
for (uint8_t i = 0; i < 2; i++) {
SPI_PORT &= ~(1 << LCD_CD);
lcd_write(0x00);
lcd_write(0x10);
lcd_write(0xB4 + i);
SPI_PORT |= (1 << LCD_CD);
lcd_write_kerning(2, backlight_selected);
lcd_write_symbol_page(&sym_b, i, backlight_selected);
lcd_write_kerning(2, backlight_selected);
lcd_write_symbol_page(&sym_a, i, backlight_selected);
lcd_write_kerning(2, backlight_selected);
lcd_write_symbol_page(&sym_c, i, backlight_selected);
lcd_write_kerning(2, backlight_selected);
lcd_write_symbol_page(&sym_k, i, backlight_selected);
lcd_write_kerning(2, backlight_selected);
lcd_write_symbol_page(&sym_l, i, backlight_selected);
lcd_write_kerning(2, backlight_selected);
lcd_write_symbol_page(&sym_i, i, backlight_selected);
lcd_write_kerning(2, backlight_selected);
lcd_write_symbol_page(&sym_g, i, backlight_selected);
lcd_write_kerning(2, backlight_selected);
lcd_write_symbol_page(&sym_h, i, backlight_selected);
lcd_write_kerning(2, backlight_selected);
lcd_write_symbol_page(&sym_t, i, backlight_selected);
lcd_write_kerning(2, backlight_selected);
lcd_write_symbol_page(&sym_colon, i, backlight_selected);
lcd_write_kerning(2, backlight_selected);
lcd_write_kerning(5, false);
lcd_write_integer_page(value_backlight, 3, i, change_backlight_selected);
lcd_write_kerning(2, change_backlight_selected);
}
for (uint8_t i = 0; i < 2; i++) {
SPI_PORT &= ~(1 << LCD_CD);
lcd_write(0x01);
lcd_write(0x12);
lcd_write(0xB6 + i);
SPI_PORT |= (1 << LCD_CD);
lcd_write_kerning(2, back_selected);
lcd_write_symbol_page(&sym_b, i, back_selected);
lcd_write_kerning(2, back_selected);
lcd_write_symbol_page(&sym_a, i, back_selected);
lcd_write_kerning(2, back_selected);
lcd_write_symbol_page(&sym_c, i, back_selected);
lcd_write_kerning(2, back_selected);
lcd_write_symbol_page(&sym_k, i, back_selected);
lcd_write_kerning(2, back_selected);
}
}
static void change_state(enum state new_state) {
switch (new_state) {
case home:
lcd_home();
current_state = home;
break;
case ch1:
break;
case ch2:
break;
case ch3:
break;
case setup:
setup_state = contrast;
lcd_setup();
current_state = setup;
break;
}
}
static void update_home(enum input event) {
switch (event) {
case cw:
home_state++;
if (home_state > setup)
home_state = ch1;
lcd_home();
break;
case ccw:
home_state--;
if (home_state > setup)
home_state = setup;
lcd_home();
break;
case click:
change_state(home_state);
break;
case hold:
break;
}
}
static void update_setup(enum input event) {
switch (event) {
case cw:
switch (setup_state) {
case contrast:
case backlight:
case back:
setup_state++;
if (setup_state > back)
setup_state = contrast;
break;
case change_contrast:
if (value_contrast < 63) {
value_contrast++;
lcd_update_contrast();
}
break;
case change_backlight:
if (value_backlight < 100) {
value_backlight++;
lcd_update_backlight();
}
break;
}
lcd_setup();
break;
case ccw:
switch (setup_state) {
case contrast:
case backlight:
case back:
setup_state--;
if (setup_state > back)
setup_state = back;
break;
case change_contrast:
if (value_contrast > 0) {
value_contrast--;
lcd_update_contrast();
}
break;
case change_backlight:
if (value_backlight > 0) {
value_backlight--;
lcd_update_backlight();
}
break;
}
lcd_setup();
break;
case click:
switch (setup_state) {
case contrast:
setup_state = change_contrast;
lcd_setup();
break;
case backlight:
setup_state = change_backlight;
lcd_setup();
break;
case back:
change_state(home);
break;
case change_contrast:
eeprom_update_byte(&eeprom_contrast, value_contrast);
setup_state = contrast;
lcd_setup();
break;
case change_backlight:
eeprom_update_byte(&eeprom_backlight, value_backlight);
setup_state = backlight;
lcd_setup();
break;
}
break;
case hold:
switch (setup_state) {
case contrast:
case backlight:
case back:
change_state(home);
break;
case change_contrast:
setup_state = contrast;
value_contrast = eeprom_read_byte(&eeprom_contrast);
lcd_update_contrast();
lcd_setup();
break;
case change_backlight:
setup_state = backlight;
value_backlight = eeprom_read_byte(&eeprom_backlight);
lcd_update_backlight();
lcd_setup();
break;
}
break;
}
}
static void update_state(enum input event) {
switch (current_state) {
case home:
update_home(event);
break;
case ch1:
break;
case ch2:
break;
case ch3:
break;
case setup:
update_setup(event);
break;
}
}
// Encoder rotation interrupt
ISR(PCINT0_vect) {
cli();
switch (enc) {
case 0:
if (ENC_A && !ENC_B)
enc = 1;
else if (!ENC_A && ENC_B)
enc = 3;
break;
case 1:
if (ENC_A && ENC_B) {
enc = 2;
update_state(cw);
} else if (!ENC_A && !ENC_B) {
enc = 0;
update_state(ccw);
}
break;
case 2:
if (!ENC_A && ENC_B)
enc = 3;
else if (ENC_A && !ENC_B)
enc = 1;
break;
case 3:
if (!ENC_A && !ENC_B) {
enc = 0;
update_state(cw);
} else if (ENC_A && ENC_B) {
enc = 2;
update_state(ccw);
}
break;
}
// TODO: proper dechattering
_delay_us(100);
sei();
}
// encoder button interrupt
ISR(PCINT1_vect) {
cli();
if (PINC & (1 << PC0)) { // release
TCCR1B &= (0 << CS11) & (0 << CS10); // Disable Timer/Counter1
if (TCNT1 != 0) {
update_state(click); // Switch to selected state
TCNT1 = 0;
}
} else { // press
if (!(TCCR1B & (1 << CS10))) {
TCCR1B |= (1 << CS11) | (1 << CS10); // Enable Timer/Counter1
}
}
// TODO: proper debouncing
_delay_us(70);
sei();
}
// Timer/Counter1 compare match A
ISR(TIMER1_COMPA_vect) {
cli();
TCCR1B &= (0 << CS11) & (0 << CS10); // Disable Timer/Counter1
TCNT1 = 0;
update_state(hold);
sei();
}
int main(void) {
// Load contrast and backlight values from EEPROM
value_contrast = eeprom_read_byte(&eeprom_contrast);
value_backlight = eeprom_read_byte(&eeprom_backlight);
// Init backlight: FastPWM: 1.25kHz
// TODO: Try to get the backlit even more dim
TCCR0A |= (1 << WGM01) | (1 << WGM00) | (1 << COM0B1);
TCCR0B |= (1 << CS01) | (1 << WGM02); // prescaler = 8;
OCR0A = 100;
lcd_update_backlight();
// SPI setup
spi_init();
lcd_init();
// Encoder setup
PORTB |= (1 << PB6) | (1 << PB7);
PCICR |= (1 << PCIE0);
PCMSK0 |= (1 << PCINT6) | (1 << PCINT7);
// Encoder switch setup
PORTC |= (1 << PC0);
PCICR |= (1 << PCIE1);
PCMSK1 |= (1 << PCINT8);
// Timer1 setup to recognize held button
OCR1A = 8192;
TIMSK1 |= (1 << OCIE1A); // Enable match compare A
// Show splash screen and load the menu
lcd_splash();
_delay_ms(250);
change_state(current_state);
// Enable interrupts
sei();
// Run...
for (;;);
}