#include #include #include #include #include #define SPI_PORT PORTB #define SPI_DDR DDRB #define SPI_SCK PB5 #define SPI_MOSI PB3 #define SPI_SS PB2 #define LCD_CD PB0 #define LCD_RST PB1 #define ENC_A (PINB & (1 << PB6)) #define ENC_B (PINB & (1 << PB7)) uint8_t EEMEM eeprom_contrast = 8; uint8_t EEMEM eeprom_backlight = 1; static const uint8_t sacred_chao[200] = { 0x00, 0x00, 0x00, 0x00, 0x80, 0xC0, 0xE0, 0xF0, 0xF0, 0xF8, 0xFC, 0xFC, 0xFE, 0xFE, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFE, 0xFE, 0xFC, 0xFC, 0xF8, 0xF0, 0xF0, 0xE0, 0xC0, 0x80, 0x00, 0x00, 0x00, 0x00, 0x80, 0xF0, 0xFC, 0xFE, 0xFF, 0xFF, 0x7F, 0x3F, 0x1F, 0x3F, 0x3F, 0x7F, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0x0F, 0x0F, 0x07, 0x07, 0x07, 0x03, 0xC3, 0xE3, 0x73, 0x37, 0x17, 0x07, 0x0F, 0x1E, 0x3C, 0xF0, 0x80, 0xFF, 0xFF, 0xFF, 0xE7, 0xC3, 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0x0F, 0x00, 0x00, 0xFC, 0xFE, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFC, 0x30, 0x00, 0x00, 0xFF, 0x01, 0x0F, 0x3F, 0x4F, 0x9F, 0x3F, 0x3E, 0x3C, 0x7C, 0x7C, 0x7C, 0x7C, 0x3E, 0x3E, 0x3E, 0x1F, 0x1F, 0x0F, 0x07, 0x01, 0x00, 0x00, 0x00, 0x01, 0x03, 0x07, 0x07, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x07, 0x07, 0x03, 0x81, 0x40, 0x30, 0x0E, 0x01, 0x00, 0x00, 0x00, 0x00, 0x01, 0x02, 0x04, 0x08, 0x08, 0x10, 0x20, 0x20, 0x40, 0x40, 0x40, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x40, 0x40, 0x40, 0x20, 0x20, 0x10, 0x08, 0x08, 0x04, 0x02, 0x01, 0x00, 0x00, 0x00, 0x00 }; static const uint8_t onders_org[96] = { 0xE0, 0x60, 0xE0, 0x00, 0x00, 0xE0, 0x60, 0xE0, 0x00, 0x00, 0xE0, 0x60, 0xF8, 0x00, 0x00, 0xE0, 0xA0, 0xE0, 0x00, 0x00, 0xE0, 0x20, 0x60, 0x00, 0x00, 0xE0, 0xA0, 0xA0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xE0, 0x60, 0xE0, 0x00, 0x00, 0xE0, 0x20, 0x60, 0x00, 0x00, 0xE0, 0x60, 0xE0, 0x03, 0x02, 0x03, 0x00, 0x00, 0x03, 0x00, 0x03, 0x00, 0x00, 0x03, 0x02, 0x03, 0x00, 0x00, 0x03, 0x02, 0x02, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x03, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0x02, 0x03, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x0B, 0x0A, 0x0F}; struct symbol { uint8_t length; uint8_t symbol[]; }; static const struct symbol sym_a = { 6, { 0xC0, 0xF0, 0x3C, 0x3C, 0xF0, 0xC0, 0x3F, 0x3F, 0x06, 0x06, 0x3F, 0x3F } }; static const struct symbol sym_b = { 6, { 0xFC, 0xFC, 0x8C, 0x8C, 0xFC, 0x78, 0x3F, 0x3F, 0x31, 0x31, 0x3F, 0x1E } }; static const struct symbol sym_c = { 5, { 0xF8, 0xFC, 0x0C, 0x1C, 0x18, 0x1F, 0x3F, 0x30, 0x38, 0x18 } }; static const struct symbol sym_e = { 5, { 0xFC, 0xFC, 0x8C, 0x8C, 0x0C, 0x3F, 0x3F, 0x31, 0x31, 0x30 } }; static const struct symbol sym_g = { 6, { 0xF8, 0xFC, 0x0C, 0x0C, 0x3C, 0x38, 0x1F, 0x3F, 0x30, 0x33, 0x3F, 0x1F } }; static const struct symbol sym_h = { 6, { 0xFC, 0xFC, 0x80, 0x80, 0xFC, 0xFC, 0x3F, 0x3F, 0x01, 0x01, 0x3F, 0x3F } }; static const struct symbol sym_i = { 4, { 0x0C, 0xFC, 0xFC, 0x0C, 0x30, 0x3F, 0x3F, 0x30 } }; static const struct symbol sym_k = { 6, { 0xFC, 0xFC, 0xC0, 0xF0, 0x7C, 0x1C, 0x3F, 0x3F, 0x03, 0x0F, 0x3E, 0x38 } }; static const struct symbol sym_l = { 5, { 0xFC, 0xFC, 0x00, 0x00, 0x00, 0x3F, 0x3F, 0x30, 0x30, 0x30 } }; static const struct symbol sym_n = { 7, { 0xFC, 0xFC, 0xF0, 0xC0, 0x00, 0xFC, 0xFC, 0x3F, 0x3F, 0x00, 0x03, 0x0F, 0x3F, 0x3F } }; static const struct symbol sym_o = { 6, { 0xF8, 0xFC, 0x0C, 0x0C, 0xFC, 0xF8, 0x1F, 0x3F, 0x30, 0x30, 0x3F, 0x1F } }; static const struct symbol sym_p = { 6, { 0xFC, 0xFC, 0x8C, 0x8C, 0xFC, 0xF8, 0x3F, 0x3F, 0x01, 0x01, 0x01, 0x00 } }; static const struct symbol sym_r = { 6, { 0xFC, 0xFC, 0x8C, 0x8C, 0xFC, 0xF8, 0x3F, 0x3F, 0x01, 0x03, 0x3F, 0x3E } }; static const struct symbol sym_s = { 6, { 0xF8, 0xFC, 0x8C, 0x8C, 0x9C, 0x18, 0x18, 0x39, 0x31, 0x31, 0x3F, 0x1F } }; static const struct symbol sym_t = { 6, { 0x0C, 0x0C, 0xFC, 0xFC, 0x0C, 0x0C, 0x00, 0x00, 0x3F, 0x3F, 0x00, 0x00 } }; static const struct symbol sym_u = { 6, { 0xFC, 0xFC, 0x00, 0x00, 0xFC, 0xFC, 0x3F, 0x3F, 0x30, 0x30, 0x3F, 0x3F } }; static const struct symbol sym_0 = { 5, { 0xF8, 0xFC, 0x0C, 0xFC, 0xF8, 0x1F, 0x3F, 0x30, 0x3F, 0x1F } }; static const struct symbol sym_1 = { 5, { 0x30, 0x30, 0xFC, 0xFC, 0x00, 0x30, 0x30, 0x3F, 0x3F, 0x30 } }; static const struct symbol sym_2 = { 5, { 0x18, 0x1C, 0x8C, 0xFC, 0xF8, 0x38, 0x3E, 0x3F, 0x33, 0x30 } }; static const struct symbol sym_3 = { 5, { 0x18, 0x9C, 0x8C, 0xFC, 0x78, 0x18, 0x39, 0x31, 0x3F, 0x1E } }; static const struct symbol sym_4 = { 5, { 0x80, 0xE0, 0x78, 0xFC, 0xFC, 0x07, 0x07, 0x06, 0x3F, 0x3F } }; static const struct symbol sym_5 = { 5, { 0xFC, 0xFC, 0x8C, 0x8C, 0x0C, 0x1C, 0x3D, 0x31, 0x3F, 0x1F } }; static const struct symbol sym_6 = { 5, { 0xF8, 0xFC, 0x8C, 0xBC, 0x38, 0x1F, 0x3F, 0x31, 0x3F, 0x1F } }; static const struct symbol sym_7 = { 5, { 0x0C, 0x0C, 0xEC, 0xFC, 0x1C, 0x00, 0x3E, 0x3F, 0x01, 0x00 } }; static const struct symbol sym_8 = { 5, { 0x78, 0xFC, 0x8C, 0xFC, 0x78, 0x1E, 0x3F, 0x31, 0x3F, 0x1E } }; static const struct symbol sym_9 = { 5, { 0xF8, 0xFC, 0x8C, 0xFC, 0xF8, 0x1C, 0x3D, 0x31, 0x3F, 0x1F } }; static const struct symbol sym_colon = { 2, { 0x30, 0x30, 0x0C, 0x0C } }; static const struct symbol sym_setup = { 19, { 0xF8, 0x98, 0xB8, 0x00, 0xF8, 0x98, 0x18, 0x00, 0x18, 0xF8, 0x18, 0x00, 0xF8, 0x00, 0xF8, 0x00, 0xF8, 0x98, 0xF8, 0x1D, 0x19, 0x1F, 0x00, 0x1F, 0x19, 0x18, 0x00, 0x00, 0x1F, 0x00, 0x00, 0x1F, 0x18, 0x1F, 0x00, 0x1F, 0x01, 0x01 } }; enum input {cw, ccw, click, hold}; static volatile enum state {home, ch1, ch2, ch3, setup} current_state = home; static volatile enum state home_state = ch1; static volatile enum setup_state {contrast, backlight, back, change_contrast, change_backlight} setup_state = contrast; static volatile uint8_t enc = 0; static volatile uint8_t value_contrast; static volatile uint8_t value_backlight; void spi_init(void) { SPI_DDR |= (1 << SPI_SCK) | (1 << SPI_MOSI) | (1 << SPI_SS); SPI_PORT |= (1 << SPI_SS); SPCR = (1 << SPE) | (1 << MSTR); SPSR = (1 << SPI2X); } uint8_t spi_byte(uint8_t data) { SPDR = data; while(!(SPSR & (1 << SPIF))); return SPDR; } void lcd_write(uint8_t data) { SPI_PORT &= ~(1 << SPI_SS); spi_byte(data); SPI_PORT |= (1 << SPI_SS); } void lcd_init(void) { SPI_DDR |= (1 << LCD_CD) | (1 << LCD_RST); _delay_ms(1); SPI_PORT |= (1 << LCD_RST); _delay_ms(5); lcd_write(0x40); // (6) Set Scroll Line: Display start line 0 lcd_write(0xA1); // (13) Set SEG direction: SEG reverse lcd_write(0xC0); // (14) Set COM direction: Normal COM0 - COM63 lcd_write(0xA6); // (11) Set Inverse Display: Display inverse off lcd_write(0xA2); // (17) Set LCD Bias Ratio: Set Bias 1/9 (Duty 1/65) lcd_write(0x2F); // (5) Set Power Control: Booster, Regulator and Follower on lcd_write(0x27); // (8) Set VLCD Resistor Ratio: Set Contrast lcd_write(0x81); // (9) Set Electronic Volume: Set Contrast lcd_write(value_contrast); // (9) Set Electronic Volume: Set Contrast lcd_write(0xAF); // (12) Set Display Enable: Display on } void lcd_update_contrast(void) { SPI_PORT &= ~(1 << LCD_CD); lcd_write(0x81); // (9) Set Electronic Volume: Set Contrast lcd_write(value_contrast); // (9) Set Electronic Volume: Set Contrast SPI_PORT |= (1 << LCD_CD); } void lcd_update_backlight(void) { switch (value_backlight) { case 0: DDRD &= (0 << PD5); break; default: DDRD |= (1 << PD5); OCR0B = value_backlight - 1; break; } } void lcd_fill(uint8_t data) { for (uint8_t i = 0; i < 8; i++) { SPI_PORT &= ~(1 << LCD_CD); lcd_write(0x00); lcd_write(0x10); lcd_write(0xB0 + i); SPI_PORT |= (1 << LCD_CD); for (uint8_t j = 0; j < 102; j++) lcd_write(data); } } static void lcd_write_kerning(const uint8_t length, const bool invert) { for (uint8_t i = 0; i < length; i++) if (invert) lcd_write(0xFF); else lcd_write(0x00); } static void lcd_write_symbol_page(const struct symbol* sym, uint8_t page, bool invert) { for (uint8_t i = 0; i < sym->length; i++) if (invert) lcd_write(~sym->symbol[page * sym->length + i]); else lcd_write(sym->symbol[page * sym->length + i]); } static void lcd_write_digit_page(uint8_t digit, uint8_t page, bool invert) { switch (digit) { case 0: lcd_write_symbol_page(&sym_0, page, invert); break; case 1: lcd_write_symbol_page(&sym_1, page, invert); break; case 2: lcd_write_symbol_page(&sym_2, page, invert); break; case 3: lcd_write_symbol_page(&sym_3, page, invert); break; case 4: lcd_write_symbol_page(&sym_4, page, invert); break; case 5: lcd_write_symbol_page(&sym_5, page, invert); break; case 6: lcd_write_symbol_page(&sym_6, page, invert); break; case 7: lcd_write_symbol_page(&sym_7, page, invert); break; case 8: lcd_write_symbol_page(&sym_8, page, invert); break; case 9: lcd_write_symbol_page(&sym_9, page, invert); break; } } static void lcd_write_integer_page(uint8_t integer, uint8_t digits, uint8_t page, bool invert) { if (digits != 0 || integer != 0) { uint8_t input_digits = 0; uint16_t comperator = 1; for (; comperator <= integer; comperator *= 10, input_digits++); for (int8_t i = digits - input_digits; i > 0; i--) { lcd_write_kerning(2, invert); lcd_write_digit_page(0, page, invert); } for (; comperator >= 10; comperator /= 10) { lcd_write_kerning(2, invert); lcd_write_digit_page((integer % comperator) / (comperator / 10), page, invert); } } } void lcd_splash(void) { lcd_fill(0x00); for (uint8_t i = 0; i < 5; i++) { SPI_PORT &= ~(1 << LCD_CD); lcd_write(0x0F); lcd_write(0x11); lcd_write(0xB1 + i); SPI_PORT |= (1 << LCD_CD); for (uint8_t j = 0; j < 40; j++) lcd_write(sacred_chao[i * 40 + j]); } for (uint8_t i = 0; i < 2; i++) { SPI_PORT &= ~(1 << LCD_CD); lcd_write(0x0A); lcd_write(0x11); lcd_write(0xB6 + i); SPI_PORT |= (1 << LCD_CD); for (uint8_t j = 0; j < 48; j++) lcd_write(onders_org[i * 48 + j]); } } static void lcd_home(void) { lcd_fill(0x00); bool ch1_selected = false; bool ch2_selected = false; bool ch3_selected = false; bool setup_selected = false; switch (home_state) { case ch1: ch1_selected = true; break; case ch2: ch2_selected = true; break; case ch3: ch3_selected = true; break; default: // setup setup_selected = true; break; } for (uint8_t i = 0; i < 2; i++) { SPI_PORT &= ~(1 << LCD_CD); lcd_write(0x00); lcd_write(0x10); lcd_write(0xB0 + i); SPI_PORT |= (1 << LCD_CD); lcd_write_kerning(2, ch1_selected); lcd_write_symbol_page(&sym_c, i, ch1_selected); lcd_write_kerning(2, ch1_selected); lcd_write_symbol_page(&sym_h, i, ch1_selected); lcd_write_kerning(2, ch1_selected); lcd_write_symbol_page(&sym_1, i, ch1_selected); lcd_write_kerning(2, ch1_selected); SPI_PORT &= ~(1 << LCD_CD); lcd_write(0x00); lcd_write(0x10); lcd_write(0xB2 + i); SPI_PORT |= (1 << LCD_CD); lcd_write_kerning(2, ch2_selected); lcd_write_symbol_page(&sym_c, i, ch2_selected); lcd_write_kerning(2, ch2_selected); lcd_write_symbol_page(&sym_h, i, ch2_selected); lcd_write_kerning(2, ch2_selected); lcd_write_symbol_page(&sym_2, i, ch2_selected); lcd_write_kerning(2, ch2_selected); SPI_PORT &= ~(1 << LCD_CD); lcd_write(0x00); lcd_write(0x10); lcd_write(0xB4 + i); SPI_PORT |= (1 << LCD_CD); lcd_write_kerning(2, ch3_selected); lcd_write_symbol_page(&sym_c, i, ch3_selected); lcd_write_kerning(2, ch3_selected); lcd_write_symbol_page(&sym_h, i, ch3_selected); lcd_write_kerning(2, ch3_selected); lcd_write_symbol_page(&sym_3, i, ch3_selected); lcd_write_kerning(2, ch3_selected); SPI_PORT &= ~(1 << LCD_CD); lcd_write(0x00); lcd_write(0x10); lcd_write(0xB6 + i); SPI_PORT |= (1 << LCD_CD); lcd_write_kerning(2, setup_selected); lcd_write_symbol_page(&sym_setup, i, setup_selected); lcd_write_kerning(3, setup_selected); } } static void lcd_setup(void) { lcd_fill(0x00); bool contrast_selected = false; bool backlight_selected = false; bool back_selected = false; bool change_contrast_selected = false; bool change_backlight_selected = false; switch (setup_state) { case contrast: contrast_selected = true; break; case backlight: backlight_selected = true; break; case back: back_selected = true; break; case change_contrast: change_contrast_selected = true; break; case change_backlight: change_backlight_selected = true; break; } for (uint8_t i = 0; i < 2; i++) { SPI_PORT &= ~(1 << LCD_CD); lcd_write(0x00); lcd_write(0x10); lcd_write(0xB0 + i); SPI_PORT |= (1 << LCD_CD); lcd_write_kerning(32, true); lcd_write_symbol_page(&sym_s, i, true); lcd_write_kerning(2, true); lcd_write_symbol_page(&sym_e, i, true); lcd_write_kerning(2, true); lcd_write_symbol_page(&sym_t, i, true); lcd_write_kerning(2, true); lcd_write_symbol_page(&sym_u, i, true); lcd_write_kerning(2, true); lcd_write_symbol_page(&sym_p, i, true); lcd_write_kerning(33, true); } for (uint8_t i = 0; i < 2; i++) { SPI_PORT &= ~(1 << LCD_CD); lcd_write(0x00); lcd_write(0x10); lcd_write(0xB2 + i); SPI_PORT |= (1 << LCD_CD); lcd_write_kerning(2, contrast_selected); lcd_write_symbol_page(&sym_c, i, contrast_selected); lcd_write_kerning(2, contrast_selected); lcd_write_symbol_page(&sym_o, i, contrast_selected); lcd_write_kerning(2, contrast_selected); lcd_write_symbol_page(&sym_n, i, contrast_selected); lcd_write_kerning(2, contrast_selected); lcd_write_symbol_page(&sym_t, i, contrast_selected); lcd_write_kerning(2, contrast_selected); lcd_write_symbol_page(&sym_r, i, contrast_selected); lcd_write_kerning(2, contrast_selected); lcd_write_symbol_page(&sym_a, i, contrast_selected); lcd_write_kerning(2, contrast_selected); lcd_write_symbol_page(&sym_s, i, contrast_selected); lcd_write_kerning(2, contrast_selected); lcd_write_symbol_page(&sym_t, i, contrast_selected); lcd_write_kerning(2, contrast_selected); lcd_write_symbol_page(&sym_colon, i, contrast_selected); lcd_write_kerning(2, contrast_selected); lcd_write_kerning(16, false); lcd_write_integer_page(value_contrast, 2, i, change_contrast_selected); lcd_write_kerning(2, change_contrast_selected); } for (uint8_t i = 0; i < 2; i++) { SPI_PORT &= ~(1 << LCD_CD); lcd_write(0x00); lcd_write(0x10); lcd_write(0xB4 + i); SPI_PORT |= (1 << LCD_CD); lcd_write_kerning(2, backlight_selected); lcd_write_symbol_page(&sym_b, i, backlight_selected); lcd_write_kerning(2, backlight_selected); lcd_write_symbol_page(&sym_a, i, backlight_selected); lcd_write_kerning(2, backlight_selected); lcd_write_symbol_page(&sym_c, i, backlight_selected); lcd_write_kerning(2, backlight_selected); lcd_write_symbol_page(&sym_k, i, backlight_selected); lcd_write_kerning(2, backlight_selected); lcd_write_symbol_page(&sym_l, i, backlight_selected); lcd_write_kerning(2, backlight_selected); lcd_write_symbol_page(&sym_i, i, backlight_selected); lcd_write_kerning(2, backlight_selected); lcd_write_symbol_page(&sym_g, i, backlight_selected); lcd_write_kerning(2, backlight_selected); lcd_write_symbol_page(&sym_h, i, backlight_selected); lcd_write_kerning(2, backlight_selected); lcd_write_symbol_page(&sym_t, i, backlight_selected); lcd_write_kerning(2, backlight_selected); lcd_write_symbol_page(&sym_colon, i, backlight_selected); lcd_write_kerning(2, backlight_selected); lcd_write_kerning(5, false); lcd_write_integer_page(value_backlight, 3, i, change_backlight_selected); lcd_write_kerning(2, change_backlight_selected); } for (uint8_t i = 0; i < 2; i++) { SPI_PORT &= ~(1 << LCD_CD); lcd_write(0x01); lcd_write(0x12); lcd_write(0xB6 + i); SPI_PORT |= (1 << LCD_CD); lcd_write_kerning(2, back_selected); lcd_write_symbol_page(&sym_b, i, back_selected); lcd_write_kerning(2, back_selected); lcd_write_symbol_page(&sym_a, i, back_selected); lcd_write_kerning(2, back_selected); lcd_write_symbol_page(&sym_c, i, back_selected); lcd_write_kerning(2, back_selected); lcd_write_symbol_page(&sym_k, i, back_selected); lcd_write_kerning(2, back_selected); } } static void change_state(enum state new_state) { switch (new_state) { case home: lcd_home(); current_state = home; break; case ch1: break; case ch2: break; case ch3: break; case setup: setup_state = contrast; lcd_setup(); current_state = setup; break; } } static void update_home(enum input event) { switch (event) { case cw: home_state++; if (home_state > setup) home_state = ch1; lcd_home(); break; case ccw: home_state--; if (home_state > setup) home_state = setup; lcd_home(); break; case click: change_state(home_state); break; case hold: break; } } static void update_setup(enum input event) { switch (event) { case cw: switch (setup_state) { case contrast: case backlight: case back: setup_state++; if (setup_state > back) setup_state = contrast; break; case change_contrast: if (value_contrast < 63) { value_contrast++; lcd_update_contrast(); } break; case change_backlight: if (value_backlight < 100) { value_backlight++; lcd_update_backlight(); } break; } lcd_setup(); break; case ccw: switch (setup_state) { case contrast: case backlight: case back: setup_state--; if (setup_state > back) setup_state = back; break; case change_contrast: if (value_contrast > 0) { value_contrast--; lcd_update_contrast(); } break; case change_backlight: if (value_backlight > 0) { value_backlight--; lcd_update_backlight(); } break; } lcd_setup(); break; case click: switch (setup_state) { case contrast: setup_state = change_contrast; lcd_setup(); break; case backlight: setup_state = change_backlight; lcd_setup(); break; case back: change_state(home); break; case change_contrast: eeprom_update_byte(&eeprom_contrast, value_contrast); setup_state = contrast; lcd_setup(); break; case change_backlight: eeprom_update_byte(&eeprom_backlight, value_backlight); setup_state = backlight; lcd_setup(); break; } break; case hold: switch (setup_state) { case contrast: case backlight: case back: change_state(home); break; case change_contrast: setup_state = contrast; value_contrast = eeprom_read_byte(&eeprom_contrast); lcd_update_contrast(); lcd_setup(); break; case change_backlight: setup_state = backlight; value_backlight = eeprom_read_byte(&eeprom_backlight); lcd_update_backlight(); lcd_setup(); break; } break; } } static void update_state(enum input event) { switch (current_state) { case home: update_home(event); break; case ch1: break; case ch2: break; case ch3: break; case setup: update_setup(event); break; } } // Encoder rotation interrupt ISR(PCINT0_vect) { cli(); switch (enc) { case 0: if (ENC_A && !ENC_B) enc = 1; else if (!ENC_A && ENC_B) enc = 3; break; case 1: if (ENC_A && ENC_B) { enc = 2; update_state(cw); } else if (!ENC_A && !ENC_B) { enc = 0; update_state(ccw); } break; case 2: if (!ENC_A && ENC_B) enc = 3; else if (ENC_A && !ENC_B) enc = 1; break; case 3: if (!ENC_A && !ENC_B) { enc = 0; update_state(cw); } else if (ENC_A && ENC_B) { enc = 2; update_state(ccw); } break; } // TODO: proper dechattering _delay_us(100); sei(); } // encoder button interrupt ISR(PCINT1_vect) { cli(); if (PINC & (1 << PC0)) { // release TCCR1B &= (0 << CS11) & (0 << CS10); // Disable Timer/Counter1 if (TCNT1 != 0) { update_state(click); // Switch to selected state TCNT1 = 0; } } else { // press if (!(TCCR1B & (1 << CS10))) { TCCR1B |= (1 << CS11) | (1 << CS10); // Enable Timer/Counter1 } } // TODO: proper debouncing _delay_us(70); sei(); } // Timer/Counter1 compare match A ISR(TIMER1_COMPA_vect) { cli(); TCCR1B &= (0 << CS11) & (0 << CS10); // Disable Timer/Counter1 TCNT1 = 0; update_state(hold); sei(); } int main(void) { // Load contrast and backlight values from EEPROM value_contrast = eeprom_read_byte(&eeprom_contrast); value_backlight = eeprom_read_byte(&eeprom_backlight); // Init backlight: FastPWM: 1.25kHz // TODO: Try to get the backlit even more dim TCCR0A |= (1 << WGM01) | (1 << WGM00) | (1 << COM0B1); TCCR0B |= (1 << CS01) | (1 << WGM02); // prescaler = 8; OCR0A = 100; lcd_update_backlight(); // SPI setup spi_init(); lcd_init(); // Encoder setup PORTB |= (1 << PB6) | (1 << PB7); PCICR |= (1 << PCIE0); PCMSK0 |= (1 << PCINT6) | (1 << PCINT7); // Encoder switch setup PORTC |= (1 << PC0); PCICR |= (1 << PCIE1); PCMSK1 |= (1 << PCINT8); // Timer1 setup to recognize held button OCR1A = 8192; TIMSK1 |= (1 << OCIE1A); // Enable match compare A // Show splash screen and load the menu lcd_splash(); _delay_ms(250); change_state(current_state); // Enable interrupts sei(); // Run... for (;;); }