#include #include #include #include #include #include #include #define SPI_PORT PORTB #define SPI_DDR DDRB #define SPI_SCK PB5 #define SPI_MOSI PB3 #define SPI_SS PB2 #define LCD_CD PB0 #define LCD_RST PB1 #define ENC_A (PINB & (1 << PB6)) #define ENC_B (PINB & (1 << PB7)) #define TWI_PORT PORTC #define TWI_SDA PC4 #define TWI_SCL PC5 #define SI5351_ADDRESS 0x60 #define SI5351_REGISTER_3_OUTPUT_ENABLE_CONTROL 3 #define SI5351_REGISTER_177_PLL_RESET 177 #define SYM_ENTRY(SYM) { SYM, sizeof(SYM) / 2 } static uint8_t EEMEM eeprom_contrast = 8; static uint8_t EEMEM eeprom_backlight = 1; static const __flash uint8_t sacred_chao[] = { 0x00, 0x00, 0x00, 0x00, 0x80, 0xC0, 0xE0, 0xF0, 0xF0, 0xF8, 0xFC, 0xFC, 0xFE, 0xFE, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFE, 0xFE, 0xFC, 0xFC, 0xF8, 0xF0, 0xF0, 0xE0, 0xC0, 0x80, 0x00, 0x00, 0x00, 0x00, 0x80, 0xF0, 0xFC, 0xFE, 0xFF, 0xFF, 0x7F, 0x3F, 0x1F, 0x3F, 0x3F, 0x7F, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0x0F, 0x0F, 0x07, 0x07, 0x07, 0x03, 0xC3, 0xE3, 0x73, 0x37, 0x17, 0x07, 0x0F, 0x1E, 0x3C, 0xF0, 0x80, 0xFF, 0xFF, 0xFF, 0xE7, 0xC3, 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0x0F, 0x00, 0x00, 0xFC, 0xFE, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFC, 0x30, 0x00, 0x00, 0xFF, 0x01, 0x0F, 0x3F, 0x4F, 0x9F, 0x3F, 0x3E, 0x3C, 0x7C, 0x7C, 0x7C, 0x7C, 0x3E, 0x3E, 0x3E, 0x1F, 0x1F, 0x0F, 0x07, 0x01, 0x00, 0x00, 0x00, 0x01, 0x03, 0x07, 0x07, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x07, 0x07, 0x03, 0x81, 0x40, 0x30, 0x0E, 0x01, 0x00, 0x00, 0x00, 0x00, 0x01, 0x02, 0x04, 0x08, 0x08, 0x10, 0x20, 0x20, 0x40, 0x40, 0x40, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x40, 0x40, 0x40, 0x20, 0x20, 0x10, 0x08, 0x08, 0x04, 0x02, 0x01, 0x00, 0x00, 0x00, 0x00 }; static const __flash uint8_t onders_org[] = { 0xE0, 0x60, 0xE0, 0x00, 0x00, 0xE0, 0x60, 0xE0, 0x00, 0x00, 0xE0, 0x60, 0xF8, 0x00, 0x00, 0xE0, 0xA0, 0xE0, 0x00, 0x00, 0xE0, 0x20, 0x60, 0x00, 0x00, 0xE0, 0xA0, 0xA0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xE0, 0x60, 0xE0, 0x00, 0x00, 0xE0, 0x20, 0x60, 0x00, 0x00, 0xE0, 0x60, 0xE0, 0x03, 0x02, 0x03, 0x00, 0x00, 0x03, 0x00, 0x03, 0x00, 0x00, 0x03, 0x02, 0x03, 0x00, 0x00, 0x03, 0x02, 0x02, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x03, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0x02, 0x03, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x0B, 0x0A, 0x0F}; static const __flash uint8_t sym_0[] = { 0xF8, 0xFC, 0x0C, 0xFC, 0xF8, 0x1F, 0x3F, 0x30, 0x3F, 0x1F }; static const __flash uint8_t sym_1[] = { 0x30, 0x30, 0xFC, 0xFC, 0x00, 0x30, 0x30, 0x3F, 0x3F, 0x30 }; static const __flash uint8_t sym_2[] = { 0x18, 0x1C, 0x8C, 0xFC, 0xF8, 0x38, 0x3E, 0x3F, 0x33, 0x30 }; static const __flash uint8_t sym_3[] = { 0x18, 0x9C, 0x8C, 0xFC, 0x78, 0x18, 0x39, 0x31, 0x3F, 0x1E }; static const __flash uint8_t sym_4[] = { 0x80, 0xE0, 0x78, 0xFC, 0xFC, 0x07, 0x07, 0x06, 0x3F, 0x3F }; static const __flash uint8_t sym_5[] = { 0xFC, 0xFC, 0x8C, 0x8C, 0x0C, 0x1C, 0x3D, 0x31, 0x3F, 0x1F }; static const __flash uint8_t sym_6[] = { 0xF8, 0xFC, 0x8C, 0xBC, 0x38, 0x1F, 0x3F, 0x31, 0x3F, 0x1F }; static const __flash uint8_t sym_7[] = { 0x0C, 0x0C, 0xEC, 0xFC, 0x1C, 0x00, 0x3E, 0x3F, 0x01, 0x00 }; static const __flash uint8_t sym_8[] = { 0x78, 0xFC, 0x8C, 0xFC, 0x78, 0x1E, 0x3F, 0x31, 0x3F, 0x1E }; static const __flash uint8_t sym_9[] = { 0xF8, 0xFC, 0x8C, 0xFC, 0xF8, 0x1C, 0x3D, 0x31, 0x3F, 0x1F }; static const __flash uint8_t sym_colon[] = { 0x30, 0x30, 0x0C, 0x0C }; static const __flash uint8_t sym_a[] = { 0xC0, 0xF0, 0x3C, 0x3C, 0xF0, 0xC0, 0x3F, 0x3F, 0x06, 0x06, 0x3F, 0x3F }; static const __flash uint8_t sym_b[] = { 0xFC, 0xFC, 0x8C, 0x8C, 0xFC, 0x78, 0x3F, 0x3F, 0x31, 0x31, 0x3F, 0x1E }; static const __flash uint8_t sym_c[] = { 0xF8, 0xFC, 0x0C, 0x1C, 0x18, 0x1F, 0x3F, 0x30, 0x38, 0x18 }; static const __flash uint8_t sym_d[] = { 0xFC, 0xFC, 0x0C, 0x1C, 0xF8, 0xF0, 0x3F, 0x3F, 0x30, 0x38, 0x1F, 0x0F }; static const __flash uint8_t sym_e[] = { 0xFC, 0xFC, 0x8C, 0x8C, 0x0C, 0x3F, 0x3F, 0x31, 0x31, 0x30 }; static const __flash uint8_t sym_g[] = { 0xF8, 0xFC, 0x0C, 0x0C, 0x3C, 0x38, 0x1F, 0x3F, 0x30, 0x33, 0x3F, 0x1F }; static const __flash uint8_t sym_h[] = { 0xFC, 0xFC, 0x80, 0x80, 0xFC, 0xFC, 0x3F, 0x3F, 0x01, 0x01, 0x3F, 0x3F }; static const __flash uint8_t sym_i[] = { 0x0C, 0xFC, 0xFC, 0x0C, 0x30, 0x3F, 0x3F, 0x30 }; static const __flash uint8_t sym_k[] = { 0xFC, 0xFC, 0xC0, 0xF0, 0x7C, 0x1C, 0x3F, 0x3F, 0x03, 0x0F, 0x3E, 0x38 }; static const __flash uint8_t sym_l[] = { 0xFC, 0xFC, 0x00, 0x00, 0x00, 0x3F, 0x3F, 0x30, 0x30, 0x30 }; static const __flash uint8_t sym_m[] = { 0xFC, 0xFC, 0x38, 0x70, 0xE0, 0x70, 0x38, 0xFC, 0xFC, 0x3F, 0x3F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3F, 0x3F }; static const __flash uint8_t sym_n[] = { 0xFC, 0xFC, 0xF0, 0xC0, 0x00, 0xFC, 0xFC, 0x3F, 0x3F, 0x00, 0x03, 0x0F, 0x3F, 0x3F }; static const __flash uint8_t sym_o[] = { 0xF8, 0xFC, 0x0C, 0x0C, 0xFC, 0xF8, 0x1F, 0x3F, 0x30, 0x30, 0x3F, 0x1F }; static const __flash uint8_t sym_p[] = { 0xFC, 0xFC, 0x8C, 0x8C, 0xFC, 0xF8, 0x3F, 0x3F, 0x01, 0x01, 0x01, 0x00 }; static const __flash uint8_t sym_r[] = { 0xFC, 0xFC, 0x8C, 0x8C, 0xFC, 0xF8, 0x3F, 0x3F, 0x01, 0x03, 0x3F, 0x3E }; static const __flash uint8_t sym_s[] = { 0xF8, 0xFC, 0x8C, 0x8C, 0x9C, 0x18, 0x18, 0x39, 0x31, 0x31, 0x3F, 0x1F }; static const __flash uint8_t sym_t[] = { 0x0C, 0x0C, 0xFC, 0xFC, 0x0C, 0x0C, 0x00, 0x00, 0x3F, 0x3F, 0x00, 0x00 }; static const __flash uint8_t sym_u[] = { 0xFC, 0xFC, 0x00, 0x00, 0xFC, 0xFC, 0x1F, 0x3F, 0x30, 0x30, 0x3F, 0x1F }; static const __flash uint8_t sym_underscore[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x20, 0x20, 0x20, 0x20 }; static const __flash uint8_t sym_invalid[] = { 0x80, 0xE0, 0x98, 0xCC, 0x4C, 0x18, 0xE0, 0x80, 0x01, 0x07, 0x1F, 0x24, 0x25, 0x1F, 0x07, 0x01}; struct symbol { const __flash uint8_t* data; const uint8_t length; }; static const struct symbol symbol_table[] = { SYM_ENTRY(sym_0), SYM_ENTRY(sym_1), SYM_ENTRY(sym_2), SYM_ENTRY(sym_3), SYM_ENTRY(sym_4), SYM_ENTRY(sym_5), SYM_ENTRY(sym_6), SYM_ENTRY(sym_7), SYM_ENTRY(sym_8), SYM_ENTRY(sym_9), SYM_ENTRY(sym_colon), SYM_ENTRY(sym_invalid), SYM_ENTRY(sym_invalid), SYM_ENTRY(sym_invalid), SYM_ENTRY(sym_invalid), SYM_ENTRY(sym_invalid), SYM_ENTRY(sym_invalid), SYM_ENTRY(sym_a), SYM_ENTRY(sym_b), SYM_ENTRY(sym_c), SYM_ENTRY(sym_d), SYM_ENTRY(sym_e), SYM_ENTRY(sym_invalid), SYM_ENTRY(sym_g), SYM_ENTRY(sym_h), SYM_ENTRY(sym_i), SYM_ENTRY(sym_invalid), SYM_ENTRY(sym_k), SYM_ENTRY(sym_l), SYM_ENTRY(sym_m), SYM_ENTRY(sym_n), SYM_ENTRY(sym_o), SYM_ENTRY(sym_p), SYM_ENTRY(sym_invalid), SYM_ENTRY(sym_r), SYM_ENTRY(sym_s), SYM_ENTRY(sym_t), SYM_ENTRY(sym_u), SYM_ENTRY(sym_invalid), SYM_ENTRY(sym_invalid), SYM_ENTRY(sym_invalid), SYM_ENTRY(sym_invalid), SYM_ENTRY(sym_invalid), SYM_ENTRY(sym_invalid), SYM_ENTRY(sym_invalid), SYM_ENTRY(sym_invalid), SYM_ENTRY(sym_invalid), SYM_ENTRY(sym_underscore), }; enum input { cw, ccw, click, hold }; static volatile enum state { home, ch1, ch2, ch3, setup } current_state = home; static volatile enum state home_state = ch1; static volatile enum setup_state { contrast, backlight, back, change_contrast, change_backlight } setup_state = contrast; static volatile uint8_t enc = 0; static volatile uint8_t value_contrast; static volatile uint8_t value_backlight; static const uint8_t m_si5351_regs_15to92_149to170[100][2] = { // Init {3, 0xFF}, {16, 0x4F}, /* CLK0 Control: 8mA drive, Multisynth 0 as CLK0 source, Clock not inverted, Source = PLLA, Multisynth 0 in integer mode, clock powered up */ {17, 0x4F}, /* CLK1 Control: 8mA drive, Multisynth 1 as CLK1 source, Clock not inverted, Source = PLLA, Multisynth 1 in integer mode, clock powered up */ {18, 0x6F}, /* CLK2 Control: 8mA drive, Multisynth 2 as CLK2 source, Clock not inverted, Source = PLLB, Multisynth 2 in integer mode, clock powered up */ {19, 0x80}, /* CLK3 Control: Not used ... clock powered down */ {20, 0x80}, /* CLK4 Control: Not used ... clock powered down */ {21, 0x80}, /* CLK5 Control: Not used ... clock powered down */ {22, 0x80}, /* CLK6 Control: Not used ... clock powered down */ {23, 0x80}, /* CLK7 Control: Not used ... clock powered down */ // PLL_A Setup (720MHz) {26, 0x00}, {27, 0x05}, {28, 0x00}, {29, 0x0C}, {30, 0x66}, {31, 0x00}, {32, 0x00}, {33, 0x02}, // PLL_B Setup (705MHz) {34, 0x02}, {35, 0x71}, {36, 0x00}, {37, 0x0C}, {38, 0x1A}, {39, 0x00}, {40, 0x00}, {41, 0x86}, // Multisynth0 Setup (120MHz) {42, 0x00}, {43, 0x01}, {44, 0x00}, {45, 0x01}, {46, 0x00}, {47, 0x00}, {48, 0x00}, {49, 0x00}, // Multisynth1 Setup (12MHz) {50, 0x00}, {51, 0x01}, {52, 0x00}, {53, 0x1C}, {54, 0x00}, {55, 0x00}, {56, 0x00}, {57, 0x00}, // Multisynth2 Setup (13.56MHz) {58, 0x00}, {59, 0x01}, {60, 0x00}, {61, 0x18}, {62, 0x00}, {63, 0x00}, {64, 0x00}, {65, 0x00}}; static void spi_init(void) { SPI_DDR |= (1 << SPI_SCK) | (1 << SPI_MOSI) | (1 << SPI_SS); SPI_PORT |= (1 << SPI_SS); SPCR = (1 << SPE) | (1 << MSTR); SPSR = (1 << SPI2X); } static uint8_t spi_byte(const uint8_t data) { SPDR = data; while(!(SPSR & (1 << SPIF))); return SPDR; } static void lcd_write(const uint8_t data) { SPI_PORT &= ~(1 << SPI_SS); spi_byte(data); SPI_PORT |= (1 << SPI_SS); } static void lcd_init(void) { // TODO: Optimize waiting times SPI_DDR |= (1 << LCD_CD) | (1 << LCD_RST); _delay_ms(1); SPI_PORT |= (1 << LCD_RST); _delay_ms(5); lcd_write(0x40); // (6) Set Scroll Line: Display start line 0 lcd_write(0xA1); // (13) Set SEG direction: SEG reverse lcd_write(0xC0); // (14) Set COM direction: Normal COM0 - COM63 lcd_write(0xA6); // (11) Set Inverse Display: Display inverse off lcd_write(0xA2); // (17) Set LCD Bias Ratio: Set Bias 1/9 (Duty 1/65) lcd_write(0x2F); // (5) Set Power Control: Booster, Regulator and Follower on lcd_write(0x27); // (8) Set VLCD Resistor Ratio: Set Contrast lcd_write(0x81); // (9) Set Electronic Volume: Set Contrast lcd_write(value_contrast); // (9) Set Electronic Volume: Set Contrast lcd_write(0xAF); // (12) Set Display Enable: Display on } static void lcd_update_contrast(void) { SPI_PORT &= ~(1 << LCD_CD); lcd_write(0x81); // (9) Set Electronic Volume: Set Contrast lcd_write(value_contrast); // (9) Set Electronic Volume: Set Contrast SPI_PORT |= (1 << LCD_CD); } static void lcd_update_backlight(void) { switch (value_backlight) { case 0: DDRD &= (0 << PD5); break; case 1: case 2: case 3: case 4: case 5: TCCR0B = 0x0C; // Prescaler = 256; DDRD |= (1 << PD5); OCR0B = value_backlight - 1; break; default: TCCR0B = 0x0B; // Prescaler = 64; DDRD |= (1 << PD5); OCR0B = value_backlight - 4; break; } } static void lcd_move_cursor(const uint8_t column, const uint8_t row) { assert(row < 16); SPI_PORT &= ~(1 << LCD_CD); lcd_write(0x00 + (0x0F & column)); lcd_write(0x10 + (column >> 4)); lcd_write(0xB0 + row); SPI_PORT |= (1 << LCD_CD); } static void lcd_fill(const uint8_t data) { for (uint8_t i = 0; i < 8; i++) { lcd_move_cursor(0, i); for (uint8_t j = 0; j < 102; j++) lcd_write(data); } } static void lcd_write_kerning(const uint8_t length, const bool invert) { for (uint8_t i = 0; i < length; i++) if (invert) lcd_write(0xFF); else lcd_write(0x00); } static void lcd_write_symbol_page(const struct symbol* symbol, const uint8_t page, const bool invert) { for (uint8_t i = 0; i < symbol->length; i++) if (invert) lcd_write(~symbol->data[page * symbol->length + i]); else lcd_write(symbol->data[page * symbol->length + i]); } static void lcd_write_digit_page(const uint8_t digit, const uint8_t page, const bool invert) { lcd_write_symbol_page(&symbol_table[digit], page, invert); } static void lcd_write_character_page(const char character, const uint8_t page, const bool invert) { lcd_write_symbol_page(&symbol_table[character - 48], page, invert); } static void lcd_write_string_page(const char* string, const uint8_t kerning, const uint8_t page, const bool invert) { for (uint8_t i = 0; string[i] != 0; i++) { lcd_write_kerning(kerning, invert); lcd_write_character_page(string[i], page, invert); } } static void lcd_write_integer_page(const uint32_t integer, const uint8_t digits, const uint8_t page, const bool invert) { if (digits != 0 || integer != 0) { uint8_t input_digits = 0; uint32_t comperator = 1; // Get digits for (; comperator <= integer; comperator *= 10, input_digits++); // Print leading zeroes for (int8_t i = digits - input_digits; i > 0; i--) { lcd_write_kerning(2, invert); lcd_write_digit_page(0, page, invert); } // Print number itself for (; comperator >= 10; comperator /= 10) { lcd_write_kerning(2, invert); lcd_write_digit_page((integer % comperator) / (comperator / 10), page, invert); } } } static void twi_error(bool inverted) { if (inverted) lcd_fill(0xFF); else lcd_fill(0x00); for (uint8_t i = 0; i < 2; i++) { lcd_move_cursor(0, i); lcd_write_string_page("TW_STATUS:\0", 2, i, inverted); lcd_write_kerning(2, inverted); lcd_write_integer_page(TW_STATUS, 3, i, inverted); } for (uint8_t i = 0; i < 2; i++) { lcd_move_cursor(0, i + 2); lcd_write_string_page("TW_DATA:\0", 2, i, inverted); lcd_write_kerning(16, inverted); lcd_write_integer_page(TWDR, 3, i, inverted); } for (;;); } static void twi_start(void) { TWCR = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN); // Start transmission while (!(TWCR & (1 << TWINT))); // Wait until start is transmitted if (TW_STATUS != TW_START) // Check status twi_error(true); } static uint8_t twi_transmit(const uint8_t data) { TWDR = data; TWCR = (1 << TWINT) | (1 << TWEN); // Transmit data while (!(TWCR & (1 << TWINT))); // Wait until data is transmitted return TW_STATUS; } static uint8_t twi_receive(void) { TWCR = (1 << TWINT) | (1 << TWEN); // Receive data while (!(TWCR & (1 << TWINT))); // Wait until data is received return TW_STATUS; } static void twi_stop(void) { TWCR = (1 << TWINT) | (1 << TWSTO) | (1 << TWEN); } static uint8_t twi_read_register(const uint8_t address, const uint8_t reg) { twi_start(); if (twi_transmit(address << 1) != TW_MT_SLA_ACK) twi_error(true); if (twi_transmit(reg) != TW_MT_DATA_ACK) twi_error(true); twi_stop(); _delay_us(2); twi_start(); if (twi_transmit((address << 1) + 1) != TW_MR_SLA_ACK) twi_error(true); if (twi_receive() != TW_MR_DATA_NACK) twi_error(true); twi_stop(); return TWDR; } static void twi_write_register(const uint8_t address, const uint8_t reg, const uint8_t data) { twi_start(); if (twi_transmit(address << 1) != TW_MT_SLA_ACK) twi_error(true); if (twi_transmit(reg) != TW_MT_DATA_ACK) twi_error(true); if (twi_transmit(data) != TW_MT_DATA_ACK) twi_error(true); twi_stop(); } static void draw_splash(void) { lcd_fill(0x00); for (uint8_t i = 0; i < 5; i++) { lcd_move_cursor(31, 1 + i); for (uint8_t j = 0; j < 40; j++) lcd_write(sacred_chao[i * 40 + j]); } for (uint8_t i = 0; i < 2; i++) { lcd_move_cursor(26, 6 + i); for (uint8_t j = 0; j < 48; j++) lcd_write(onders_org[i * 48 + j]); } } static void draw_home(void) { lcd_fill(0x00); bool ch1_selected = false; bool ch2_selected = false; bool ch3_selected = false; bool setup_selected = false; switch (home_state) { case ch1: ch1_selected = true; break; case ch2: ch2_selected = true; break; case ch3: ch3_selected = true; break; default: // setup setup_selected = true; break; } for (uint8_t i = 0; i < 2; i++) { lcd_move_cursor(0, i); lcd_write_string_page("CH1\0", 2, i, ch1_selected); lcd_write_kerning(2, ch1_selected); lcd_move_cursor(0, 2 + i); lcd_write_string_page("CH2\0", 2, i, ch2_selected); lcd_write_kerning(2, ch2_selected); lcd_move_cursor(0, 4 + i); lcd_write_string_page("CH3\0", 2, i, ch3_selected); lcd_write_kerning(2, ch3_selected); lcd_move_cursor(33, 6 + i); lcd_write_string_page("SETUP\0", 2, i, setup_selected); lcd_write_kerning(2, setup_selected); } } static void draw_setup(void) { lcd_fill(0x00); bool contrast_selected = false; bool backlight_selected = false; bool back_selected = false; bool change_contrast_selected = false; bool change_backlight_selected = false; switch (setup_state) { case contrast: contrast_selected = true; break; case backlight: backlight_selected = true; break; case back: back_selected = true; break; case change_contrast: change_contrast_selected = true; break; case change_backlight: change_backlight_selected = true; break; } for (uint8_t i = 0; i < 2; i++) { lcd_move_cursor(0, i); lcd_write_kerning(30, true); lcd_write_string_page("SETUP\0", 2, i, true); lcd_write_kerning(33, true); } for (uint8_t i = 0; i < 2; i++) { lcd_move_cursor(0, 2 + i); lcd_write_string_page("CONTRAST:\0", 2, i, contrast_selected); lcd_write_kerning(2, contrast_selected); lcd_write_kerning(16, false); lcd_write_integer_page(value_contrast, 2, i, change_contrast_selected); lcd_write_kerning(2, change_contrast_selected); } for (uint8_t i = 0; i < 2; i++) { lcd_move_cursor(0, 4 + i); lcd_write_string_page("BACKLIGHT:\0", 2, i, backlight_selected); lcd_write_kerning(2, backlight_selected); lcd_write_kerning(5, false); lcd_write_integer_page(value_backlight, 3, i, change_backlight_selected); lcd_write_kerning(2, change_backlight_selected); } for (uint8_t i = 0; i < 2; i++) { lcd_move_cursor(33, 6 + i); lcd_write_string_page("BACK\0", 2, i, back_selected); lcd_write_kerning(2, back_selected); } } static void change_state(const enum state new_state) { switch (new_state) { case home: draw_home(); current_state = home; break; case ch1: break; case ch2: break; case ch3: break; case setup: setup_state = contrast; draw_setup(); current_state = setup; break; } } static void update_home(const enum input event) { switch (event) { case cw: home_state++; if (home_state > setup) home_state = ch1; draw_home(); break; case ccw: home_state--; if (home_state > setup) home_state = setup; draw_home(); break; case click: change_state(home_state); break; case hold: break; } } static void update_setup(const enum input event) { switch (event) { case cw: switch (setup_state) { case contrast: case backlight: case back: setup_state++; if (setup_state > back) setup_state = contrast; break; case change_contrast: if (value_contrast < 63) { value_contrast++; lcd_update_contrast(); } break; case change_backlight: if (value_backlight < 100) { value_backlight++; lcd_update_backlight(); } break; } draw_setup(); break; case ccw: switch (setup_state) { case contrast: case backlight: case back: setup_state--; if (setup_state > back) setup_state = back; break; case change_contrast: if (value_contrast > 0) { value_contrast--; lcd_update_contrast(); } break; case change_backlight: if (value_backlight > 0) { value_backlight--; lcd_update_backlight(); } break; } draw_setup(); break; case click: switch (setup_state) { case contrast: setup_state = change_contrast; draw_setup(); break; case backlight: setup_state = change_backlight; draw_setup(); break; case back: change_state(home); break; case change_contrast: eeprom_update_byte(&eeprom_contrast, value_contrast); setup_state = contrast; draw_setup(); break; case change_backlight: eeprom_update_byte(&eeprom_backlight, value_backlight); setup_state = backlight; draw_setup(); break; } break; case hold: switch (setup_state) { case contrast: case backlight: case back: change_state(home); break; case change_contrast: setup_state = contrast; value_contrast = eeprom_read_byte(&eeprom_contrast); lcd_update_contrast(); draw_setup(); break; case change_backlight: setup_state = backlight; value_backlight = eeprom_read_byte(&eeprom_backlight); lcd_update_backlight(); draw_setup(); break; } break; } } static void update_state(const enum input event) { switch (current_state) { case home: update_home(event); break; case ch1: break; case ch2: break; case ch3: break; case setup: update_setup(event); break; } } // Encoder rotation interrupt ISR(PCINT0_vect) { cli(); // Dechatter _delay_ms(3); switch (enc) { case 0: if (ENC_A && !ENC_B) enc = 1; else if (!ENC_A && ENC_B) enc = 3; break; case 1: if (ENC_A && ENC_B) { enc = 2; update_state(cw); } else if (!ENC_A && !ENC_B) { enc = 0; update_state(ccw); } break; case 2: if (!ENC_A && ENC_B) enc = 3; else if (ENC_A && !ENC_B) enc = 1; break; case 3: if (!ENC_A && !ENC_B) { enc = 0; update_state(cw); } else if (ENC_A && ENC_B) { enc = 2; update_state(ccw); } break; } sei(); } // Encoder button interrupt ISR(PCINT1_vect) { cli(); // Debounce _delay_ms(2); if (PINC & (1 << PC0)) { // Release if (TCCR1B & (1 << CS10)) // If release before hold update_state(click); // Switch to selected state TCCR1B &= (0 << CS11) & (0 << CS10); // Disable Timer/Counter1 } else { // Press TCNT1 = 0; if (!(TCCR1B & (1 << CS10))) TCCR1B |= (1 << CS11) | (1 << CS10); // Enable Timer/Counter1 } sei(); } // Timer/Counter1 compare match A for back event ISR(TIMER1_COMPA_vect) { cli(); TCCR1B &= (0 << CS11) & (0 << CS10); // Disable Timer/Counter1 update_state(hold); sei(); } int main(void) { // Load contrast and backlight values from EEPROM value_contrast = eeprom_read_byte(&eeprom_contrast); value_backlight = eeprom_read_byte(&eeprom_backlight); // Init backlight TCCR0A |= (1 << WGM01) | (1 << WGM00) | (1 << COM0B1); OCR0A = 255; lcd_update_backlight(); // SPI and LCD init spi_init(); lcd_init(); // Encoder setup PORTB |= (1 << PB6) | (1 << PB7); PCICR |= (1 << PCIE0); PCMSK0 |= (1 << PCINT6) | (1 << PCINT7); // Encoder switch setup PORTC |= (1 << PC0); PCICR |= (1 << PCIE1); PCMSK1 |= (1 << PCINT8); // Timer/Counter1 setup to recognize held button OCR1A = 65535; TIMSK1 |= (1 << OCIE1A); // Enable match compare A // Show splash screen draw_splash(); _delay_ms(2000); // Load the menu change_state(current_state); // Set TWI bit rate to 200kHz TWBR = 12; (void) &twi_read_register; (void) &twi_write_register; for (uint16_t i = 0; i < sizeof(m_si5351_regs_15to92_149to170) / 2; i++) twi_write_register(SI5351_ADDRESS, m_si5351_regs_15to92_149to170[i][0], m_si5351_regs_15to92_149to170[i][1]); twi_write_register(SI5351_ADDRESS, SI5351_REGISTER_177_PLL_RESET, 0xAC); twi_write_register(SI5351_ADDRESS, SI5351_REGISTER_3_OUTPUT_ENABLE_CONTROL, 0x00); // Enable interrupts sei(); // Run... for (;;); }